Translating cumulative antibiogram to antibiotic policy

Balaji Veeraraghavan MD, PhD, FRCP

The Hilda Lazarus Core Research Chair Christian Medical College & Hospital

	Enteroba	cteriaceae	NFG	NB
	E. coli	K. pneumoniae	P. aeruginosa	A. baumannii
ESBLs	72%	61%	25%	70 %
	SHV, TEM, CTX-M-15	SHV, TEM, CTX-M-15	VEB	TEM, PER
Carbapenemase	9 %	40%	25%	70%
	NDM, Oxa-48 like	Oxa-48 like, NDM	VIM, NDM, IMP, GES	Oxa-23, 24, 51, 58 NDM
Colistin	8 %	37 %	<5 %	<5 %
Among carbapenem resistant organisms		mgrB, PhoP/Q, PmrA/B	PhoP/Q, PmrA/B, ParR/S	PmrA/B, Lpx genes
Hyper virulent		+++		

Deciding empirical therapy is "Challenging" as the mechanisms of resistance are highly diverse Rapid microbial identification and AST profile may help for appropriate therapy

Antimicrobials in the pipeline : Will this benefit India ?

Agents	FDA status	Active against genotypic markers	
Ceftolozane / tazobactam	Approved	ESBLs, AmpC	NO (Except for <i>P. aeruginosa</i>)
Ceftazidime / avibactam	Approved	ESBLs, AmpC, KPC and some class D β- lactamases	NO
Meropenem / vaborbactam	Approved	ESBLs, AmpC, KPC	NO
Aztreonam / avibactam	Phase 3 development	ESBLs, AmpC, KPC, MβLs,	Moderate activity
Imipenem / relebactam	Phase 3 development	ESBLs, AmpC, KPC	NO (Except for P. aeruginosa)
Cefiderocol	Phase 3 development	ESBLs, AmpC, KPC, MβLs, class D Oxa's (Oxa-48, 23, 24, 51, 58)	Only promising agent
Plazomicin	FDA approved	All AMEs (AAC, APH, ANT)	Moderate activity <mark>5-20%</mark> against AMEs producing organisms

newer agents may work for ESBLs but not for carbapenemase

Goal....

✓ To minimize the morbidity and mortality due to antimicrobial-resistant infection

✓To preserve the effectiveness of antimicrobial agents in the treatment

✓To prevent microbial infections

Streptococcus pneumoniae

Cumulative	Penic	cillin(%)	Cefota	axime(%)	Erythrom ycin(%)	Azithromyc in (%)	Clindamy cin (%)	Levofloxaci n (%)	Moxifloxac in(%)	Co- amoxiclav(%)
antibiogram	М	NM	Ν	NM						
(Susceptibility)	31	92	74	94	27	35	70	94	96	93
Antibiotic policy	Meni CAP: fluoro AOM	ngitis: P Amoxici oquinolo : Amoxic	enicillin, llin/Co-a one/ van cillin/Co-	/ Cefotaxir imoxiclav comycin (amoxiclav	ne/ Vancomy or cephalosp MRSA) /Pip-T , cefpodoxim	cin/ Meropene orin with macr azo, cefepime e, cefuroxime, o	m olide or doxy with Imipen ceftriaxone	ycycline / Ampio em (Pseudomo	cillin-Sulbactam onas spp)	/ respiratory
Standard treatment Guidelines	Resp daily 400m daily, CNS: Vanco Vanco	iratory in oral or 1. ng once (cefuro) CTR- 2gr omycin-1 ine recor	nfection .2gm IV daily PO kime-50 m 12 hou 5mg/Kg mmenda	ns: Amoxic q8h, Doxy or IV, Cef omg twice urly, Ceftaz (max 2gn ations: PC	illin -500-100 cycline-100m triaxone(CTR daily, cefpoo idime -2GM o) eight hour / and PPSV fo	omg thrice dail Ig twice daily, L)-2gm once da doxime-200mg q 6-8 hourly, Ce ly or risk group (ly(PO or IV), Levofloxacin ily, Cefotaxir twice daily, efotaxime- 2g elderly, smo	Co-amoxiclav- 1 – 750 mg twice ne-2gm thrice c Pip/Tazo-4.5gn gm 6 hourly, Me kers and with c	gm twice daily/ daily PO or IV, laily Cefepime-2 n thrice daily eropenem- 2gm o-morbidities)	/ 625 mg thrice Moxifloxacin- 2gm twice n 8 hourly,
Antimicrobial stewardship	Meni Non-r Perfo increa Respi	ngitis : c meninge orm both ase dosa iratory ir	efotaxir a l, inva s penicill ge of ce	me alone , sive: in and cefe efotaxime, as : De-esca	if cefotaxime otaxime MIC if cefotaxime alation or ste	e MIC ≤ 1.0µg/n / increase the e MIC ≥ 1.0 and p-down therap	nl; add vanco dosage of pe d penicillin M by after the c	omycin if cefota enicillin if MIC is NIC is >2.0 ulture and AST	axime MIC ≥ 1.0 5 ≥0.06 to ≤2.0 results	µg/ml µg/ml and

January 2014

M39-A4

Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline—Fourth Edition

Cumulative susceptibility of bacterial isolates

- ✓ Strategy that help in choosing the right empirical antibiotic
- \checkmark Track local antibiotic resistance trends
- ✓ Drug-bug combinations, to be reported
- ✓ Next level antibiogram
 - specimen type or infection site
 - organism resistance characteristics
 - Clinical service or patient population

Cumulative hospital antibiogram

Key Reporting strategies

- ✓ Always report
 - narrow spectrum agents
 - at least one oral and one IV agent
 - at least one agent for patients with penicillin allergy

Staphylococcus aureus

Staphylococcus aureus (% of susceptibility)

Organism	Cefoxitin	Gentamicin	Erythromycin	Clindamycin	Co-trimoxazole	Minocycline	Chloramphenicol	Rifampicin	Vancomycin	Linezolid
MSSA	100%	95%	50%	75%	79%	100%	99%	99.5%	Not	100%
(n=203)	(203/203)	(192/203)	(97/193)	(139/186)	(157/199)	(191/191)	(131/132)	(199/200)	reported	(202/202)
MRSA	0%	57%	32%	59%	72%	99%	97%	95%	100%	100%
(n=157)	(0/157)	(90/157)	(49/155)	(91/153)	(107/148)	(153/154)	(119/123)	(149/157)	(21/21)	(157/157)

Methicillin susceptible S. aureus Susceptibility reporting

		Firs	t line an	tibiotics					Seco	nd line	antibio	otics
Syndromes	Cefoxitin/ Oxacillin	Gentamicin	Erythromycin	Clindamycin	Tetracycline	Co-trimoxazole	Chloramphenicol	Rifampicin	Vancomycin	Linezolid	Daptomycin	Minocycline
Blood	\checkmark	\checkmark	Х	Х	Х	Х	\checkmark	\checkmark	Х	Х	Х	Х
SSTIs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	Х	Х
Pneumonia	\checkmark	Х	Х	Х	Х	Х	Х	Х	Х	\checkmark	Х	Х
Bone and joint infections	\checkmark	√	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	Х	✓
CSF/sterile site	\checkmark	Х	Х	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark

MSSA management Recommendations

- Cefoxitin/oxacillin susceptible staphylococci can be considered susceptible to penicillinase stable penicillin, beta-lactam combination, cephalosporins, carbapenem and monobactams
- ✓ Cefazolin is better tolerated than anti-staphylocccal penicillins
- ✓ No vancomycin, only beta lactams
- ✓ Persistent bacteremia addition of etrapenem gives dramatic recovery

Methicillin resistant S. aureus Susceptibility reporting

		Firs	t line an	tibiotics					Seco	nd line	antibio	otics
Syndromes	Cefoxitin/ Oxacillin	Gentamicin	Erythromycin	Clindamycin	Tetracycline	Co-trimoxazole	Chloramphenicol	Rifampicin	Vancomycin	Linezolid	Daptomycin	Minocycline
Blood	\checkmark	\checkmark	Х	Х	Х	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х
SSTIs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	Х
Pneumonia	\checkmark	Х	Х	Х	Х	Х	Х	Х	\checkmark	\checkmark	\checkmark	Х
Bone and joint infections	\checkmark	\checkmark	Х	Х	\checkmark	\checkmark	Х	\checkmark	\checkmark	✓	✓	✓
CSF/sterile site	\checkmark	Х	Х	х	Х	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Gram negative

	-			cent ouse	.epuore						-		
				Beta	-lactams			An	ninoglyco	osides	FQs [†]	01	ther
Gram-Negative Organisms	No. Strains	ampicillin	cefazolin	cefotaxime	ceftazidime	imipenem	piperacillin- tazobactam	amikacin	gentamicin	tobramycin	ciprofloxacin	nitrofurantoin [‡]	trimethoprim- sulfamethoxazole
Acinetobacter baumannii	32	7	-	34	52	80	46	80	60	59	51	-	58
Citrobacter freundii	49	-	-	72	67	99	67	100	100	100	90	78	67
Enterobacter aerogenes	31	-	-	68	69	99	74	100	91	91	92	85	95
Enterobacter cloacae	76	-	-	61	62	99	77	99	90	90	92	81	84
Escherichia coli	1433	36	74	96	94	99	51	99	91	92	72	98	65
Klebsiella pneumoniae	543	-	72	91	92	99	86	99	94	94	84	74	81
Morganella morganii	44	-	-	85	81	99	64	100	100	100	99	-	75
Proteus mirabilis	88	87	80	99	99	100	70	100	90	93	89	-	73
Pseudomonas aeruginosa	397	-	-	-	76	80	85	97	80	83	75	-	-
Salmonella spp.	32	88	-	97	97	100	91	-	-	-	90	-	86
Serratia marcescens	5			C	100		tivo	2	atik				

Dercent Suscentible

Cumulative antibiogram Generally...one big report, but... increasing emphasis on segregating data to answer specific questions

*%S for each organism/antimicrobial combination wa *FQ = fluoroquinolones

Shigella spp.

Stenotrophomonas maltophilia

[‡]Nitrofurantoin, data from testing urine isolates only;

Escherichia coli (% susceptibility)

Organism	Cefotaxime	Ceftazidime	Cefepime	Piperacillin/ Tazobactam	Cefoperazone/ Sulbactam	lmipenem	Meropenem	Amikacin	Gentamicin
E. coli (n=985)	27% (254/95 6)	26% (245/959)	33% (298/890)	64% (624/978)	71% (487/686)	88% (186/209)	88% (853/971)	87% (855/980)	64% (622/975)

Organism	Ciprofloxacin	Chloramphenicol	Tetracycline	Minocycline	Tigecycline	Ertapenem
E. coli	32%	76%	39%	75%	83%	89%
(n=985)	(310/964)	(737/970)	(351/899)	(734/973)	(733/885)	(611/681)

E.coli Urine isolates % Susceptible * 4 patients populations

Category	n	Am	Cz	Cip	Fm	Sxt
All patient	3801	53	88	79	99	72
In patient	421	40	75	62	98	61
Out patient**	3411	54	89	80	99	73
18-40 yrs female out patient	998	60	92	92	99	77

* % Susceptible from first isolates/pt** Includes ER patients

Variability in urine culture & susceptibility ordering practices

Clinical Scenario	No (%) of general practitioners who said they would order C&S
Probable uncomplicated UTI	165/278 (59%)
Previous treatment failure in older women	262/291 (90%)

✓ More likely to have resistant organisms (Hillier et al.J antimicro Chemother.2006;58:1303)

✓ Patient with uncomplicated UTI s often not cultured!

Indian MDR E. coli

Antibiotic	E	ffect & Reason
Amikacin	X	RMTases
Pip/Taz	X	CTX-M-15 and OXA-1
Meropenem	X	NDM
Tigecycline	\checkmark	
Minocycline	\checkmark	
Colistin	\checkmark	
CAZ/AVI	X	NDM
AZT/AVI	X	PBP3
Cefiderocol	\checkmark	

Colistin after aerosol delivery and intravenous administration of CMS in critically ill patients

 \checkmark IV colistin

- Plasma (0.15 to 4.7 mg/L)
- ELF (1.48 to 28.9 mg/L)

✓ Aerosol colistin

- Plasma (0.15 0.73 mg/L)
- ELF (9.53 to 1,137 mg/L)
- 9% of CMS dose reaches ELF and only 1.4% presystemically converted to colistin

Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects

- ✓ Tigecycline
 100 mg followed by 50mg q12h
- ✓ Plasma tigecycline level:
 0.11 0.98 mg/L

✓ ELF: 1.49 - 2.33 mg/L

Boisson et al., Antimicrob agents chemother. 2014; 58:7331-9 Gotfried MH et al., Antimicrob Agents Chemother. 2017;61(9). pii: e01135-17.

Shigella spp – Recommendations

% susceptibility						
Organism	Ampicillin	Co-trimoxazole	Ciprofloxacin	Cefotaxime	Cefixime	Azithromycin
Shigella flexneri	35%	23%	13%	98%	98%	96%
(n=52)	(18/52)	(12/52)	(7/52)	(51/52)	(51/52)	(50/52)
Shigella sonnei	75%	14%	14%	100%	98%	88%
(n=44)	(33/44)	(6/44)	(6/44)	(44/44)	(43/44)	(37/42)

- ✓ Varying susceptibility was observed for ampicillin within species (S. sonnei are more susceptible than S. flexneri)
- ✓ Shigella spp are highly resistant to co-trimoxazole and fluroquinolones
- ✓ Current drug of choice will be third generation cephalosporins and azithromycin

P. aeruginosa (% susceptibility)

Anti-pseudomonal choice for empiric therapy

✓ Cumulative susceptibility may mislead at times – especially for Pseudomonas

✓ Susceptibility of isolates from hospital – ICUs differs from that of wards and community origin

✓ Discrepant profile of antibiotics within a same class – BEWARE...

Respiratory isolates with discrepant profile - common			
Ceftazidime	Meropenem	Piperacillin/ Tazobactam	Phenotypes (n)
S	S	S	587
R	R	R	56
R	R	S	10
S	R	R	4*
S	R	S	19*

*If empiric therapy is meropenem, its continuation for such phenotypes may cause clinical failures and the therapy must be narrowed down to a susceptible agents when in-vitro susceptibility report is available *P aeruginosa* % susceptible* (N=726) to 7 drugs and %S to either or both when 2 drugs are evaluated (% S 2 drugs does not imply synergy, antagonism or likely activity in vivo)

	Amik (94%)	Gent (80%)	Tob (85%)	Cip (64%)
Ceftaz (74%)	98	93	94	89
Mero (79%)	98	93	93	87
PiP/Taz (69%)	98	91	92	85
Cip (64%)	97	88	89	-

- \checkmark Analysis included the most R result for each drug if patient had >1 isolate
- ✓ %S for either or both drugs (eg.% S to amik and/or Ceftaz)
- ✓ Used ≤ 16 μ g/ml break point for S

Quantitative antibiogram linked Empirical therapy

Clinical relevance of MIC₅₀, MIC₉₀

MIC₅₀

- ✓ More than susceptible breakpoint
- ✓ "Not suitable" for empiric therapy

MIC₉₀

- ✓ More than susceptible breakpoint
- ✓ Differs for Drug-bug combination
- ✓ Clinical success can be expected (60-70%)

MIC50 and MIC 90 < Susceptible breakpoint

Rationale to treat ESBL infection

	MIC ₅₀ (µg/ml)	MIC ₉₀ (µg/ml)	Recommendation	Probability of success
3GC (≤4 suscep bp)	> 32	>128	Not to be used	0%
Pip/Taz (≤16/4 Susc bp)	16/4	>128/4	ESBL producing E.coli/Klebsiella sp	50-70 %
Cefto/Tazo (≤ 2/4 Sus bp)	2/4	>32/4	Pseudomonas sp.,	50-70 %
Cefta/Aviba (≤ 2/4 Sus bp)	2/4	4/4	Enterobacteriaceae, Pseudomonas sp.	100%

Papadimitriou-Olivgeris et al., J Antimicrob Chemother 2019; 74:2051–2054.

Evaluation of Newer Agents: Enzyme and organism specific

	Active against	Not Active against	Pathogens covered	Pathogens not covered
amox/clav, pip/taz, tic/clav, cfp/sul	ESBLs	AmpCs, Carbapenemases	Enterobacteriaceae	P. aeruginosa and A. baumannii
Ceftazidime/ avibactam	ESBLs, AmpC, KPC-2, Oxa48 like	KPC-3, MBL (NDM)	CRE or colistin-resistant Enterobacteriaceae and P.aeruginosa	A. baumannii
Meropenem/ vaborbactam	ESBLs, AmpC, KPC- 2,3	MBL(NDM), Oxa-48 like, 23/24/58 like	Carbapenem resistant Enterobacteriaceae (CRE)	Activity not enhanced against P. aeruginosa, A. baumannii
lmipenem/ relebactam	ESBLs, AmpC, KPC	MBL(NDM), Oxa-48 like,23/24/58 like	MDR Enterobacteriaceae and P.aeruginosa	Activity not enhanced against A. baumannii
Meropenem/ nacubactam	ESBLs, AmpC, KPC	MBL(NDM), Oxa-48 like, 23/24/58 like	Carbapenem resistant Enterobacteriaceae (CRE)	Activity not enhanced against P. aeruginosa, A. baumannii

Selective & cascade reporting of antibiotics

Pathogens	Susceptibility	Don't report
Gram negative pathogens	3 rd Gen Cephalosporins, βL/βLI	Carbapenem, Colistin, fosfomycin and tigecycline
S. aureus	Oxacillin (MSSA)	Vancomycin, teicoplanin, linezolid and tigecycline
Enterococcus sp.,	Ampicillin and gentamicin	Vancomycin, teicoplanin, linezolid and tigecycline
Streptococcus pneumoniae	Susceptible to Oxacillin	Vancomycin, and linezolid
S. pneumoniae, R to oxacillin	Penicillin, cefotaxime MIC + S to vancomycin	Linezolid

Empirical therapy is to be changed to targeted therapy when AST report is available (within 72 hours)
 For ICU patients, ID expert recommendations to be followed for change in therapy

Are the recommendations prudent?

Do low MICs reliably predict good outcomes?
 Would treat based on low MIC & absence of ESBL/Carbapenamase

Are routine tests adequately precise?
 To stratify S/I/R across the now critical range of 1–4 mg/L

Changed to Antimicrobial consumption calculator (AMC tool)

Monnet DL. ABC Calc - Antibiotic consumption calculator [Microsoft® Excel application]. Version 1.9, Copenhagen (Denmark): Statens Serum Institut 2006

Antibiotic policy fails

Infection control policies failing?

 ✓ If hand hygiene adherence rate is 10-40% remaining % - negated by antibiotic

Antibiotic use as a cause of Hospital infection ✓ 3GCephalosporins and quinolones - Promotes Increased MRSA/GNB colonization and infection

Uniform rather than Heterogenous prescribtion

Inappropriate – 'just- in- case'

✓ Misdiagnosis or a poor quality severity assessment

2

Antibiotic policy^{1,2}

http://www.searo.who.int/LinkFiles/WHD-11_ha-policy.pdf

Step-by-step approach for development and implementation of hospital antibiotic policy and standard treatment guidelines

The primary aim of the hospital antimicrobial policy is to minimize the morbidity and mortality due to antimicrobial-resistant infection; and to preserve the effectiveness of antimicrobial agents in the treatment and prevention of communicable diseases.

Scope of hospital antibiotic policy

The antibiotic policy is essentially for prophylaxis, empirical and definitive therapy. The policy shall incorporate specific recommendations for the treatment of different high-risk/special groups such as immunocompromised hosts; hospital-associated infections and community-associated infections.

The hospital antibiotic policy shall be based upon:

- spectrum of antibiotic activity;
- pharmacokinetics/pharmacodynamics of these medicines;
- adverse effects;

Thanks for your attention